Seasonal and interannual variation in spatio-temporal models for index standardization and phenology studies

James T. Thorson ${ }^{1}$, Charles F. Adams ${ }^{2}$, Elizabeth N. Brooks ${ }^{2}$, Lisa B. Eisner ${ }^{3}$, David G. Kimmel 4, Christopher M. Legault ${ }^{2}$, Lauren A. Rogers ${ }^{4}$, Ellen M. Yasumiishi ${ }^{3}$

${ }^{1}$ Habitat and Ecological Processes Research Program, Alaska Fisheries Science Center, NOAA, Seattle, WA 98115 USA
${ }^{2}$ Northeast Fisheries Science Center, NOAA, NMFS, 166 Water Street, Woods Hole, Massachusetts 02543-1026 USA
${ }^{3}$ Ecosystem Monitoring and Assessment, Alaska Fisheries Science Center, NOAA, NMFS, Juneau, AK 99801 USA
${ }^{4}$ Recruitment Process Program, Alaska Fisheries Science Center, NOAA, NMFS, Seattle, Seattle, WA 98115 USA

Keywords: seasonal variation; phenology; vector autoregressive spatio-temporal (VAST) model; Calanus; yellowtail flounder, Limanda ferruginea; index standardization

Abstract

:

Climate change is rapidly affecting the seasonal timing of spatial demographic processes. Consequently, resource managers require information from models that simultaneously measure seasonal, interannual, and spatial variation. We present a spatio-temporal model that includes annual, seasonal, and spatial variation in density and then highlight two important uses: (1) standardizing data that are spatially unbalanced within multiple seasons; and (2) identifying inter-annual changes in seasonal timing ("phenology") of population processes. We demonstrate these uses with two contrasting case studies: three bottom trawl surveys for yellowtail flounder (Limanda ferruginea) in the Northwest Atlantic Ocean from 1985-2017, and pelagic tows for copepodite stage $3+$ copepod (Calanus glacialis/marshallae) densities in the eastern Bering Sea from 1993-2016. The yellowtail analysis illustrates how data from multiple surveys can be used to infer density hot spots in an area that is not sampled one or more surveys. The copepod analysis assimilates seasonally unbalanced samples to estimate an annual index of the seasonal timing of copepod abundance, and identifies a positive correlation between this index and coldpool extent. We conclude by discussing additional potential uses of seasonal spatio-temporal models and emphasize their ability to identify climate-driven shifts in the seasonal timing of fish movement and ecosystem productivity.

Introduction

Resource surveys are conducted worldwide to track changes in abundance for managed species. These surveys are typically designed by management agencies to support a participatory management process, where regulations are developed, proposed, and evaluated over the course of several months or years. As a consequence, resource surveys are often designed to index variation on the same interannual time-scale as management operates, typically occurring over a fixed time-interval in each year. Well-known examples include the Christmas count survey for birds in North America (Butcher et al., 1990), or the spring and fall fishery resource surveys conducted annually in the Northwest Atlantic Ocean from 1963 to present day (Grosslein, 1969; Politis et al., 2014). By occurring at the same time each year, this design is a powerful way to control for within-year shifts in species distribution while maximizing statistical power for detecting interannual variation in abundance.

Despite this common emphasis on capturing interannual variation in resource abundance, there are many reasons to study changes occurring within a single year. For example, many terrestrial and aquatic animals undergo a seasonal migration that partitions habitats available for feeding and raising young, or follow ontogenetic movement patterns associated with distinct life stages (e.g., immature vs. mature). The spatial extent and timing of these seasonal migrations may shift over time, either due to changes in land use (Zipkin et al., 2012) or environmental conditions (Nichol et al., 2019). Detecting these shifts in seasonal migration typically require data (either via individual tracks or population counts) that arise across multiple seasonal periods. In particular, the timing of different population processes ("phenology") is predicted to be a sensitive indicator of climate impacts (Scranton and Amarasekare, 2017), so detecting climate-driven shifts in seasonal processes is a high priority for climate-impact studies.

Furthermore, there is a growing interest in leveraging citizen-science and other opportunistic data sources (Callaghan et al., 2018), and proper interpretation of these data sets requires accounting for variation in population density among seasons.

In addition to studies detecting climate impacts on phenology, there is also a growing literature documenting shifts in spatial distribution that are associated with local and regional climate conditions (Pinsky et al., 2013). Shifts in spatial distribution can be estimated using spatio-temporal models (e.g., Thorson, 2019a), which estimate a "latent" (unobserved) map of population densities across space and how this map of density changes over time (Cressie and Wikle, 2011). Importantly, these spatio-temporal models typically include a spatial correlation function, which allows densities to be predicted even at locations where sampling does not occur (Cressie et al., 2009). Density predictions arising from spatially unbalanced sampling may be biased when sampling locations are not "missing at random"; that is, the probability of sampling is correlated with the density occurring at a given location (Cressie et al., 2009; Conn et al., 2017). Nevertheless, spatio-temporal models for spatially unbalanced data can still mitigate bias arising from ignoring the spatial configuration of data, where changes in the spatial distribution of sampling would otherwise be confounded with changes in population density (Thorson et al., 2016a).

While scientific surveys follow a defined sampling design and aim to maintain consistent protocols, there are uncontrollable circumstances that can disrupt this design. For example, severe weather, mechanical problems with the ship, and constraints arising from multiple objectives and/or budget cuts can lead to greatly reduced or incomplete sampling of survey strata in a given year. As a result, it becomes difficult to interpret interannual trends in abundance for years when the design is not followed. In stock assessments for marine species, an analyst might
choose to exclude, downweight, or perform an ad hoc expansion for those incompletely sampled years. By contrast, a seasonal spatio-temporal model could use sampling information from another survey to inform about abundance in unsampled or poorly sampled areas. Similarly, surveys of within-season changes in abundance or phenology will sometimes depart from their design, or the design will shift over time. In these cases, it becomes necessary to simultaneously correct for spatial and seasonal patterns in abundance when interpreting seasonally and spatially unbalanced sampling data. While past studies have developed models that account for seasonal variation when forecasting annual changes in abundance (e.g., Grieve et al., 2017; Kanamori et al., 2019), these studies have not typically demonstrated the potential to assimilate seasonally unbalanced sampling data (although see Pinto et al. (2018) for one exception).

In this study, we illustrate how to assimilate spatially and seasonally unbalanced sampling data using a spatio-temporal model that includes both changes in spatial distribution among years (interannual variation) and among seasons (seasonal variation). Models including both spatial and temporal variation are often termed "spatio-temporal models." We start by describing a default configuration of our proposed seasonal spatio-temporal model, which includes seasonal and annual main effects and an autocorrelated season-year effect for both intercepts and spatial variation within a delta-modelling framework. This configuration preserves correlations in spatial distribution among seasons for a given year (e.g., annual drivers of distribution), among years for a given season (e.g., seasonal migratory patterns), and among adjacent seasons within and across years (e.g., transient hotspots in spatial distribution). Previous spatio-temporal models have typically included either interannual variation (e.g., Ono et al., 2018) or seasonal variation (e.g., Thorson et al., 2016b; Grieve et al., 2017) in isolation. Alternatively, a few studies have modeled residual variation in spatial distribution among seasons and years.

However, these have not modeled the full set of correlations we consider in this study, e.g., without correlations among years for a given season (Pinto et al., 2018), without correlations among seasons for a given year (Kai et al., 2017), or without information about the sequence of seasons within a given year (Kanamori et al., 2019). We then demonstrate model performance using two contrasting case-studies: (1) standardizing seasonal indices of abundance for a commercially important fish in the Northwest Atlantic, and (2) estimating interannual changes in phenology for a planktonic crustacean in the northeast Pacific. These two case-studies highlight our ability to share information among seasons to account for spatially unbalanced sampling among years and seasons, and to identify changes in seasonal dynamics over time.

Methods

Model structure

We seek to develop a statistical model that represents spatial variation in population density, and how density changes both among years ("interannual variation") and within years ("seasonal variation"). We envision that field-sampling data are available, where sample b_{i} records the biomass (kg) or abundance (numbers) encountered by the i-th sample, occurring at location s_{i} (within a fixed and pre-defined spatial domain), year y_{i} (between a minimum and maximum year $y \in\left\{y_{\min }, \ldots, y_{\max }\right\}$), and season u_{i} (among an ordered set of intervals occurring within a year, $u_{i} \in\left\{u_{1}, \ldots, u_{U}\right\}$). These seasons could be quarters (winter, spring, summer, fall), months (January-December), weeks (1-52), or any intervals defined within a year (whether having even or uneven spacing and duration). In this notation, the combination of year y_{i} and season u_{i} is sufficient to define the time of a given sample, and the term t to describe this combination, $t \in$ $\left\{y_{\min } u_{1}, y_{\min } u_{2}, \ldots, y_{\max } u_{U}\right\}$, where seasons and years are ordered such that $t+1$ is the year-
season combination occurring immediately after t and $t-1$ is the year-season combination preceding t. We note that densities can change rapidly within a given year and encourage future studies to explore different intervals for season u, as we do in the following case study for copepod densities.

In particular, we seek a model that has reasonable performance even when data are entirely unavailable for one or more combinations of year and season. In these instances, we specify that estimates in year-season t are shrunk towards predicted density in adjacent year-seasons $(t-1$ and $t+1$), as well as towards estimated density in other seasons for a given year (other u for a given y) and density in other years for a given season (other y for a given u). This specification implies that the model will include a "main effect" for season and year, as well as an autocorrelated "interaction" of season and year.

We implement these criteria using a Poisson-link delta model (Thorson, 2018) that specifies a probability distribution for random variable B, corresponding to the likelihood of response variable b_{i} for each sample $i, \operatorname{Pr}\left(B=b_{i}\right)$. This Poisson-link delta model includes the probability p_{i} that sample i encounters a given species (i.e., $\operatorname{Pr}(B>0)$), and also the expected measurement r_{i} given that the species is encountered, $\operatorname{Pr}(B \mid B>0)$:

$$
\operatorname{Pr}\left(B=b_{i}\right)=\left\{\begin{array}{cc}
1-p_{i} & \text { if } B=0 \tag{1}\\
p_{i} \times g\left\{B \mid r_{i}, \sigma_{m}^{2}\right\} & \text { if } B>0
\end{array}\right.
$$

where we specify a lognormal distribution for the distribution g of positive catches. This Poisson-link delta model predicts encounter probability p_{i} and positive catch rate r_{i} by modelling two \log-linked linear predictors, $\log \left(n_{i}\right)$ and $\log \left(w_{i}\right)$ for each sample $i ; n_{i}$ and w_{i} are then transformed to yield p_{i} and r_{i} :

$$
\begin{gather*}
p_{i}=1-\exp \left(-a_{i} \times n_{i}\right) \tag{2}\\
r_{i}=\frac{a_{i} \times n_{i}}{p_{i}} \times w_{i}
\end{gather*}
$$

where a_{i} is the area-swept offset for sample i. This model structure is designed such that expected density d_{i} is the product of encounter probability and positive catch rate, and also the product of transformed linear predictors (i.e., $d_{i}=p_{i} r_{i}=n_{i} w_{i}$). When the response-variable b_{i} is in units biomass, these predictors can be interpreted as numbers density n_{i} (with units numbers per area) and average weights w_{i} (with units biomass per number). Alternatively, if the responsevariable is in units numbers, n_{i} (with units numbers per area) and w_{i} (with dimensionless units) describe a parametric link between expected encounter probability and expected numbers given an encounter, but they are not specifically interpretable as describing numbers-density and biomass per number. In both interpretations, n_{i} always enters via the product $a_{i} \times n_{i}$ such that n_{i} is expressed as density.

The Poisson-link delta model is useful relative to other delta-models because both linear predictors use a log-link function, so that all effects are additive in their impact on predicted logdensity. Specifically, we specify that:

$$
\log \left(n_{i}\right)=\underbrace{\beta_{n}^{*}\left(t_{i}\right)}_{\begin{array}{c}
\text { Year-Season } \tag{3}\\
\text { intercept }
\end{array}}+\underbrace{\omega_{n}^{*}\left(s_{i}\right)}_{\begin{array}{c}
\text { Spatial } \\
\text { maineffect }
\end{array}}+\underbrace{\xi_{n u}^{*}\left(s_{i}, u_{i}\right)}_{\begin{array}{c}
\text { Season } \\
\text { spatial effect }
\end{array}}+\underbrace{\xi_{n y}^{*}\left(s_{i}, y_{i}\right)}_{\begin{array}{c}
\text { Spatial effect }
\end{array}}+\underbrace{\varepsilon_{n}^{*}\left(s_{i}, t_{i}\right)}_{\begin{array}{c}
\text { Year-Season } \\
\text { spatial effect }
\end{array}}
$$

where the other linear predictor w_{i} is defined identically except that the subscript n is replaced by w for all coefficients. In applications with limited information (either due to low sample sizes or small variance), the variance of one or more of these terms may be estimated near zero such that the corresponding term is then dropped from the model. Specifying an additive structure in
log-space for both variables $\left(n_{i}\right.$ and $\left.w_{i}\right)$ simplifies interpretation of estimated terms where, e.g., $\omega_{n}^{*}\left(s_{1}\right)=0.1$ indicates that $n\left(s_{1}, t\right)$ is expected to be 10% higher at location s_{1} than at location s_{2} where $\omega_{n}^{*}\left(s_{2}\right)=0$. We also hypothesize that this additive structure in log-space will be more parsimonious than a conventional delta-model, although testing this is an empirical question for future research.

Spatial terms are estimated using a predictive-process framework (Banerjee et al., 2008), such that we estimate the value of each spatial variable at a set of "knots," where the number of knots n_{x} is specified by the user in a balance between computational speed and spatial resolution. In the case of spatial variation, we specify a Gaussian Markov random field for vector $\boldsymbol{\omega}_{n}^{*}$ containing the value of the spatial variable $\omega_{n}(s)$ at each knot s :

$$
\begin{equation*}
\boldsymbol{\omega}_{n} \sim M V N\left(\mathbf{0}, \sigma_{n \omega}^{2} \mathbf{R}_{n}\right) \tag{4}
\end{equation*}
$$

where \mathbf{R}_{n} is the correlation matrix and $\sigma_{n \omega}^{2}$ is the pointwise variance such that $\sigma_{n \omega}^{2} \mathbf{R}_{n}$ is the spatial covariance. We then project from the values $\boldsymbol{\omega}_{n}$ at knots to the values $\boldsymbol{\omega}_{n}^{*}$ at the location of available data. The correlation matrix, in turn, is calculated based on a vector of distance $\mathbf{d}\left(s_{1}, s_{2}\right)$ between any pair of locations s_{1} and s_{2}, and we use a sparse precision matrix that approximates a Matérn correlation function (Lindgren et al., 2011):

$$
\begin{equation*}
\mathbf{R}_{n}\left(s_{1}, s_{1}\right)=\frac{1}{2^{v-1} \Gamma(v)} \times\left(\kappa_{n}\left|\mathbf{d}\left(s_{1}, s_{2}\right) \mathbf{H}\right|\right)^{v} \times K_{v}\left(\kappa_{n}\left|\mathbf{d}\left(s_{1}, s_{2}\right) \mathbf{H}\right|\right) \tag{5}
\end{equation*}
$$

where we estimate a linear transformation \mathbf{H} involving estimated parameters (representing geometric anisotropy) and decorrelation rate κ_{n}. Given the value of a spatial variable at each knot, the value at any given location s within spatial domain Ω is then calculated using bilinear interpolation, using a projection matrix calculated by the R package R-INLA (Lindgren, 2012).

Season and year main spatial effects are specified similarly, except the probability of $\boldsymbol{\xi}_{n u}(u)$ is calculated independently for every season u, and the probability of $\boldsymbol{\xi}_{n y}(y)$ is calculated independently for every year y. However, the year-season interaction $\boldsymbol{\varepsilon}_{n}(s, t)$ is autocorrelated across the ordered year-season index t :

$$
\boldsymbol{\varepsilon}_{n}(s, t) \sim\left\{\begin{array}{cl}
M V N\left(\mathbf{0}, \mathbf{Q}^{-1}\right) & \text { if } t=t_{\min } \tag{6}\\
M V N\left(\rho_{n \varepsilon} \boldsymbol{\varepsilon}_{n}(s, t-1), \mathbf{Q}^{-1}\right) & \text { if } t>t_{\min }
\end{array}\right.
$$

where the degree of autocorrelation $\rho_{n \varepsilon}$ in spatio-temporal variation $\boldsymbol{\varepsilon}_{n}(s, t)$ is also estimated. We here assume that the decorrelation-rate parameters κ_{n} and κ_{w} are identical for spatial and spatio-temporal components and different between the two linear predictors n and w; future research could explore alternative specification for these hyperparameters.

Similarly, intercepts $\beta_{n}(t)$ are specified such that they can be interpolated for season-year combinations without any data using information from adjacent season-years, other years of the same season, or other seasons of the same year. This is again accomplished by including season and year main effects, and an autocorrelated interaction of season and year:

$$
\begin{equation*}
\beta_{n}^{*}(t)=\mu_{\beta}+\beta_{n u}(u)+\beta_{n y}(y)+\beta_{n t}(t) \tag{7}
\end{equation*}
$$

Where μ_{β} is the average intercept across all seasons and years, $\beta_{n u}(u)$ captures differences in expected intercept among seasons $u, \beta_{n y}(y)$ captures differences in expected intercepts among years y, and $\beta_{n t}(t)$ represents an autocorrelated season-year interaction:

$$
\beta_{n t}(t) \sim\left\{\begin{array}{cl}
N\left(0, \sigma_{n \beta}^{2}\right) & \text { if } t=t_{\min } \tag{8}\\
N\left(\rho_{n \beta} \beta_{n t}(t-1), \sigma_{n \beta}^{2}\right) & \text { if } t>t_{\min }
\end{array}\right.
$$

and where the magnitude of autocorrelation is again estimated from available data. We ensure identifiability for $\mu_{\beta}, \beta_{n u}(u)$, and $\beta_{n y}(y)$ by imposing a corner constraint on the season and year
effects (i.e., $\beta_{n u}(u)=0$ and $\beta_{n y}(y)=0$ for the first season u and year y). This corner constraint is necessary for intercepts (i.e., Eq. 7) but not spatial terms (i.e., Eq. 3) because the season and year intercepts are treated as fixed effects, while the season and year spatial terms are treated as random effects. We note that this model structure imposes no constraints on the expected "shape" of seasonal variation; that is, the model can capture unimodal or multi-modal distribution of abundance across seasons within a year.

Parameters are estimated using release 3.2.0 of package VAST (Thorson, 2019b), which is publicly available online (https://github.com/James-Thorson/VAST), and runs within the R statistical environment (R Core Team, 2017). The performance of VAST for models such as this has been simulation-tested previously (Thorson et al., 2015, 2016a; Grüss et al., 2019; Johnson et al., 2019; Brodie et al., 2020), and we recommend future simulation experiments exploring performance for the specific seasonal structure proposed here. VAST estimates fixed effects while approximating their marginal likelihood using the Laplace approximation (Skaug and Fournier, 2006). The Laplace approximation is implemented in turn using R package TMB (Kristensen et al., 2016), and computational efficiency is improved using automatic differentiation (Fournier et al., 2012) and the SPDE approximation to spatial correlation matrices (and associated projection matrices) from R-INLA (Lindgren and Rue, 2015). Standard errors are calculated using a generalization of the delta-method (Kass and Steffey, 1989), and standard errors are available for predictions of local density after estimating all fixed and random effects:

$$
\begin{align*}
d(s, t)=n(s, t) & \times w(s, t) \tag{9}\\
& =\exp \left\{\beta_{n}^{*}(t)+\omega_{n}^{*}(s)+\xi_{n u}^{*}(s, u)+\xi_{n y}^{*}(s, y)+\varepsilon_{n}^{*}(s, t)\right\} \\
& \times \exp \left\{\beta_{w}^{*}(t)+\omega_{w}^{*}(s)+\xi_{w u}^{*}(s, u)+\xi_{w y}^{*}(s, y)+\varepsilon_{w}^{*}(s, t)\right\}
\end{align*}
$$

where density can then be visualized or further processed to yield derived statistics. For example, total abundance is calculated as the area-weighted sum of density $d(s, t)$ predicted at a fine spatial resolution:

$$
\begin{equation*}
D(t)=\sum_{s=1}^{n_{s}} a(s) d(s, t) \tag{10}
\end{equation*}
$$

Where n_{s} is the number of fine-scale predictions and $a(s)$ is the spatial area associated with each prediction.

Case study demonstrations

We apply this model to two case studies that are chosen to represent different geographic areas, seasonal resolution, taxonomic focus, and inferential goals.

1. Yellowtail flounder on Georges Bank: The first case-study involves yellowtail flounder (Limanda ferruginea) on Georges Bank, a shallow stretch of the continental shelf in the Northwest Atlantic Ocean. This commercially important species is sampled by three bottom trawl surveys that each provide a different snapshot of fish distribution and abundance. We seek to answer: can we standardize data from multiple surveys to share information across seasonal sampling programs and thereby predict density in unsampled times and areas?
2. Copepods in the eastern Bering Sea: The second case-study involves copepodite stage 3-6 abundance in oblique plankton tows from five meters above sea floor to water surface for Calanus marshallae/glacialis. These copepods are a substantial component of diet for fish, seabirds and marine mammals in the eastern Bering Sea (Livingston et al., 2017). Copepods undergo rapid population growth and decline during the annual sampling interval, and this application is therefore useful to highlight the potential for a relatively fine resolution for
seasonal intervals. We seek to answer: can seasonally unbalanced sampling data be used to identify changes in the seasonal timing of population densities; for example, to estimate the seasonal match between larval fish and zooplankton prey?

We discuss each in more detail below (see Fig. 1 for seasonal and interannual variability in data availability).

Case study \#1: Yellowtail flounder on Georges Bank

Yellowtail flounder are a historically important component of the Georges Bank fishery and ecosystem (Stone et al., 2004), but are currently at low biomass due to low recruitment and unexplained mortality of adults (Legault and McCurdy, 2018). Despite a large amount of agebased data available for this stock, standard stock assessment models have performed poorly with large retrospective patterns and were replaced with an index-based approach in 2014 (Legault et al., 2014).

We compile sampling data for three bottom trawl surveys 1985-2017 (see Fig. S1): Spring (March 24 - April 25) and Fall (Sept. 30 - Nov. 6) bottom trawl surveys conducted by the Northeast Fisheries Science Center (NEFSC), and a bottom trawl survey by Department of Fisheries and Oceans (DFO) Canada (Feb. 11 - March 29) (O’Boyle et al., 1995; Politis et al., 2014). The NEFSC Spring and Fall surveys switched vessels in 2009 , and we use data converted to units of the earlier survey based on paired intercalibration sampling (Miller et al., 2010). By contrast, the DFO survey gear has been consistent over time, and uses different protocols than the earlier US survey, hence likely catching a different proportion of local abundance (termed "catchability") than the US surveys. Surveys also differ in their spatial footprint of sampling: the US surveys follow a stratified random design that covers the entire stock boundary, while the

DFO survey uses a different stratified random design and samples only a subset of this spatial area, avoiding the southwestern corner as well as moraine habitat in the western portion (Stone and Gross, 2012).

Design-based indices of abundance are available for all three surveys, although we note that the DFO design-based index is calculated only for the portion of the stock sampled by that survey. We also fit an alternative multivariate spatio-temporal model, which treats each season as a separate category and estimates independent spatial and spatio-temporal variation for each season. This "default" specification is widely used in fisheries index-standardization (Thorson, 2019b), and therefore provides a reference-value for abundance indices calculated in a more conventional manner.

The Georges Bank yellowtail flounder stock is defined for an area that straddles the Hague Line separating the US and Canadian exclusive economic zones (EEZ), requiring a method to allocate the total quota between the two countries. Swept area estimates from the three surveys (DFO, NEFSC spring and NEFSC fall) are averaged, proportions on either side of the Hague Line are calculated, and then a loess smooth is fit to the respective time series east/west. The total annual quota is allocated between countries based on the terminal year smoothed proportion of total stock biomass in US and Canadian waters (Murawski and Gavaris, 2004). Given the importance of comparing estimates of abundance between DFO and US surveys, we seek to develop an alternative model that can predict density using data from all surveys over the spatial footprint of the stock assessment.

We use a model with annual and seasonal main effects for both intercepts and spatial variation, using 250 knots to approximate spatial variables, and an autoregressive process for the interaction of year and season. Initial runs of the full model showed that several variance
components were estimated to be zero, and we changed the model to avoid numerical problems associated with a parameter estimated at a bound (i.e., an estimated variance of zero); see Table S3 for details. The seasonal main effect for intercepts includes the effect of both seasonal differences in density as well as differences in catchability among gears, and resulting density estimates are not directly comparable among surveys due to this missing information regarding catchability differences. We therefore display resulting abundance indices after scaling each series to have a mean of 1.0 across years. We focus interpretation by displaying the autocorrelated spatial variation in the season-year interaction, to demonstrate how this model component allows information to be shared between seasons.

Case study \#2: Copepods in the eastern Bering Sea

Copepods are an important component of secondary production in the Bering Sea, and occur in stomach samples for a wide range of commercially important fishes (Livingston et al., 2017). Two species of copepod (Calanus glacialis and C. marshallae) co-occur in the eastern Bering Sea and are difficult to identify to species, and we refer to them collectively as C. glacialis/marshallae in the following (Campbell et al., 2016). C. glacialis/marshallae has one cohort per year in the eastern Bering Sea and is a key prey for multiple fish species in their first year of life (Strasburger et al., 2014). Productivity and spatial dynamics in this ecosystem are strongly associated with wintertime sea-ice extent (Hunt et al., 2011) and the resulting extent of cold near-bottom waters (termed the 'cold pool;' Sigler et al., 2011) during the summer growing season for copepods (Eisner et al., 2014, 2018; Kimmel et al., 2018). Historically, zooplankton sampling in the EBS occurred on process-oriented surveys, which varied year to year in their spatial and temporal coverage. Recently, sampling has occurred more regularly in spring (late April) and fall (late September) along the 70 m isobath from the southeastern Bering Sea M2
mooring location ($56.87 \mathrm{~N}, 164.05 \mathrm{~W}$) to the M8 mooring location ($62.19 \mathrm{~N}, 174.69 \mathrm{~W}$). Additionally, zooplankton sampling has occurred in recent years along a grid in the southeastern Bering Sea from the inner to outer shelf ($\sim 30-180 \mathrm{~m}$) from 54.5 to 60 N in May and again in August/September. We here restrict samples to oblique tows of a bongo net, starting near bottom and ending near surface (see Fig. S2), and approximate spatial variation using 100 knots. These oblique tows include a measure of total volume swept, and we divide the total number of copepodite stage $3+$ copepod (Calanus glacialis/marshallae) by volume swept, and then multiply by the seafloor depth at the beginning of the tow to obtain vertically integrated numbers-density. Using vertically integrated numbers-density as response-variable then allows us to predict vertically integrated densities across a standard survey area, where the sum across this survey area represents a prediction of vertical and spatially integrated abundance in numbers. Future studies could instead include water-column height as an offset, and expand densities while defining area, $a(s)$ in Eq. 10, as the product of surface-area and water-column height; we leave this comparison as a topic of future research. C. glacialis/marshallae occur in 97\% (3691 of 3802) of all available samples, and there is little information available to identify spatial, temporal, or seasonal patterns in encounter probability. We therefore use a reduced model wherein we remove all spatial and temporal variation in the first linear predictor (i.e., $n_{i}=n$ for all locations s, seasons u, and years y), such that the model estimates a single encounter probability for all samples, and focuses inference on the expected number of Calanus encountered in each sample. The model again estimated several variance terms near zero, and we eliminated terms with zero variance to avoid numerical difficulties (see Table S3 for details).

We specifically seek to measure interannual changes in C. glacialis/marshallae phenology. To do so, we calculate the weighted average of seasonal intervals, where each season is weighted
by the total abundance in that season. This "abundance-weighted average season" statistic is analogous to "center of gravity" (COG), which is calculated as the abundance-weighted spatial location for a population; COG is widely used as a measure of spatial distribution shifts (Pinsky and Palumbi, 2013; Thorson et al., 2016a). We specifically calculate abundance-weighted average season $\bar{u}(t)$ as:

$$
\begin{equation*}
\bar{u}(y)=\sum_{t \in \mathbf{t}_{y}}\left(\frac{D(t)}{D_{y}} \times u_{t}\right) \tag{11}
\end{equation*}
$$

where \mathbf{t}_{y} is the vector of season-year indices t in year y, u_{t} is the season corresponding to season-year t, D_{y} is the area-weighted sum of densities across locations and seasons in year y, $D_{y}=\sum_{t \in \mathbf{t}_{y}} D(t)$, and $D(t)$ is defined in Eq. 10. Standard errors for $\bar{u}(t)$ are again calculated using the generalized delta-method. This index does not measure "peak abundance" per se, but instead measures years when C. glacialis/marshallae abundance is high in early or later portions of the summer growing season. Given the known climate-sensitivity of copepod production in the Bering Sea, we compare our phenology estimate with the summertime areal extent of the cold pool (waters $<2{ }^{\circ} \mathrm{C}$) on the EBS shelf (Robert Lauth, personal communication) as measured using temperature sensors deployed on bottom trawl gear in the eastern Bering Sea (Lauth and Conner, 2016).

Finally, we explore the sensitivity of the abundance-weighted average season $\bar{u}(t)$ to the a priori specification of the number of seasonal intervals that are modeled in each year. To do so, we contrast results from our model using month-long intervals (nine seasonal-intervals per year after excluding months with no sampling) with either aggregating all samples into Spring (Feb.May) and Summer/Fall (June-Oct.) seasons (two seasons per year), or aggregating samples into
two-week intervals (18 seasonal intervals per year with data). For each of these seasonal specifications, we fit the same seasonal spatio-temporal model and compare resulting estimates of $\bar{u}(t)$; we hypothesize that either month-long or biweekly intervals will be sufficiently finegrained to yield similar results, while the two-season model will have such coarse seasonal resolution that it will likely result in different estimates than the other two models.

Results

We use the same seasonal spatio-temporal model for both case studies (see Fig. S3 for triangulated meshes in each example). However, we use this model for very different inference in each case study, and therefore address them separately below.

Georges Bank yellowtail flounder: Inferring seasonal variation in unsampled habitat

We first compare total abundance of yellowtail flounder on Georges Bank in each of three seasons, estimated using the seasonal spatio-temporal model with either a design-based index or a simpler spatio-temporal model that is run independently for each season (Fig. 2). This comparison shows that the two model-based indices have similar estimates of total abundance, and differ more from the design-based index for DFO. We note that the design-based index for DFO has a large spike in 2008/2009, and this spike is not represented in either model-based index. Model exploration shows that this spike arose from one sample in each of those years wherein the DFO survey caught an anomalously large quantity of yellowtail flounder. The model-based indices both treat these observations as "outliers" relative to the weighting used by the design-based estimator, and hence these samples have less statistical leverage in the modelbased than the design-based index.

We next explore the ways in which the seasonal spatio-temporal model shares information among seasons. The largest consequence is that it extrapolates the DFO index back to 1985/1986, when there was no DFO sampling (see Fig. 2 top panel and Fig. S1). This extrapolation is based on the main effects of season and year for both intercepts and spatial variation, such that the index in those years is "shrunk" towards the approximately stable trend in abundance seen in the other seasons in that year; the extrapolation also results in an increase in standard errors (width of blue shaded area) in those years relative to others. We also highlight the consequence of autocorrelation ($\rho_{n \varepsilon}=0.85$ and $\rho_{w \varepsilon}=-0.19$; see Table 1) on estimated spatio-temporal variation arising across seasons and years (Fig. 3). In 1989-1992, for example, the spring and fall surveys both encountered an increase in density relative to long-term averages in the southwestern stock area, where DFO sampling does not occur. This hot spot is estimated to occur starting in fall 1989, and persists consecutively through 1990 and into the DFO survey in 1991, before largely reverting to long-term densities by the spring survey in 1991. These and other examples of autocorrelated season-year variation cause the seasonal model to shrink estimates in areas lacking samples towards their estimates in other seasons with more spatially comprehensive sampling.

Eastern Bering Sea copepods: Measuring interannual variation in phenology

We next explore the behavior of the seasonal model when applied to a case study with more seasons (nine intervals each lasting one month). This case-study exhibits an extremely unbalanced sampling design across seasons (see bottom panel of Fig. 1), where the majority of sampling is available in either April-May or Aug.-Sept. We start by illustrating C. glacialis/marshallae density estimates in four selected years (Fig. 4, showing 1994/2002/2007/2012). Later years (2007/2012) are selected to show the impact of the spatially
distributed sampling design in May and Aug.-Oct. that is currently implemented in the eastern Bering Sea, while earlier years (1994/2002) are selected to show the relatively opportunistic sampling that occurred in these years (see Fig. S2 for spatial coverage of sampling across all years). Density plots (Fig. 4) again show the role of autocorrelated season-year effects ($\rho_{w \varepsilon}=$ 0.72 ; see Table 1) on model performance where, for example, the spatial configuration of highdensity areas in 2012 is essentially interpolated between May and August, given that sampling data are sparse between these two months. Alternatively, years with few sampling data in any month (e.g., 1994) are shrunk towards the estimate of the season main-effect, where the model typically estimates increased densities and a broader distribution of high-density habitats in JuneJuly relative to early (Feb.-April) or late (Sept.-Oct.) months.

We next illustrate abundance indices across seasons for each year (Fig. 5), which confirms that the seasonal main-effects are estimated to follow a dome-shaped pattern in C. glacialis/marshallae density with a peak in June-July (as shown in 1996/2001, when data are particularly sparse). As noted in the Methods section, this dome-shaped pattern is not specified within the estimation model, and instead arises purely from average patterns seen in the data. Similarly, the action of the year main-effect is also apparent. For example, sampling in April 1994 yields elevated density relative to its spatial and seasonal expectation and the model therefore predicts elevated density for all seasons in that year. By contrast, sampling in August 2002 yielded lower densities than the average for its season and location, resulting in an estimate of low density for that entire year. In these years with seasonally restricted sampling (e.g., 1993/2002), the confidence intervals are relatively wide compared with years with seasonally distributed sampling (e.g., 2007-2012).

Finally, we compute the abundance-weighted average season for C. glacialis/marshallae in the eastern Bering Sea (Fig. 6). Standard errors are sufficiently small to detect interannual variation in phenology (e.g., where 2003 is earlier than 2007) during years with seasonally distributed sampling (approximately 2003 onward), while intervals are much wider in earlier years. The predicted index across all years ranges between mid-June to late July, and therefore spans nearly 45 days. As expected, the index is positively correlated $($ Pearson correlation $=0.60)$ with cold-pool extent, where "warm years" (those with a small cold pool) are estimated to have earlier average copepod phenology and vice-versa for "cold years" with a large cold pool. The index is similar when specifying 18 biweekly seasonal intervals (Fig. S4). Indices from these two models are also correlated with the index estimated using two (Spring vs. Summer/Fall) seasonal intervals, although the latter model does not yield an interpretable scale for variation among years due to the coarse resolution of seasonal intervals.

Discussion

In this study, we have demonstrated how a seasonal spatio-temporal model can be constructed to account for spatially and seasonally unbalanced sampling data. We used two contrasting case studies to show that this seasonal spatio-temporal model can yield information that is useful for both ecological insight as well as applied fisheries management. We first discuss each of these case studies in detail, and then speculate about other potential applications.

Our first case study focused on inferring interannual changes in resource abundance for a commercially important fish while accounting for spatial areas that are regularly sampled by some but not all seasonal surveys. This situation is common in many transboundary negotiations, for example, for fisheries in the North Sea (Pedersen and Berg, 2017), although the
yellowtail flounder case-study had a unique difficulty of involving different spatial coverage for data in each season. While both the NEFSC surveys and the DFO survey have a stratified random design, the DFO survey has a higher sampling rate in Canadian waters than US waters (see Fig. S1). In particular, the portion of the DFO survey used in the Georges Bank yellowtail flounder assessment does not cover the southwest portion of the bank, which is covered by the two NEFSC surveys. There are DFO survey strata in this area, but this area often does not contain sample locations due to the low sampling rate or is dropped entirely when the survey has to end early due to weather or vessel troubles. These practical and logistical factors are common in bottom trawl surveys and lead to imbalanced sampling and coverage among surveys. Applying a seasonal spatio-temporal model provides a statistically sound approach to combining the information from the multiple surveys; we showed that it is useful specifically to infer hot spots in density in unsampled areas and times based on sampling occurring in other seasons. This may be particularly important when the spatial distribution of biomass is estimated for areas that differ from the survey stratification, as in the quota allocation sharing agreement for this stock.

By contrast, the second case study focused on inferring interannual variation in phenology for two pelagic crustacean species using vertically integrated tows from many different sampling programs, each with different seasonal timing and spatial distribution. Resulting estimates of abundance-weighted average season showed a clear and statistically significant association between phenology and oceanographic conditions, while allowing comparison of phenology across years with greatly different seasonal data availability. Numerous studies have shown that C. glacialis/marshallae populations have peak abundance in June and July (e.g., Eisner et al. (2018) using data from 2008-2010), and also respond to interannual variability in temperature on the southeastern Bering Sea shelf (Baier and Napp, 2003; Coyle et al., 2008; Eisner et al., 2014,

2018; Coyle and Gibson, 2017; Kimmel et al., 2018). In years with early ice retreat, C. glacialis/marshallae that emerge from diapause will experience a potential mismatch with the spring phytoplankton bloom that occurs later during warm years (Brown and Arrigo, 2013; Sigler et al., 2014, 2016). This mismatch combined with warmer temperatures that accelerate development, appears to reduce C. marshallae/glacialis abundances and they typically have low abundance by mid-August to late September in warm years, perhaps due to entry into diapause (Kimmel et al., 2018). During years of late ice retreat, by contrast, C. glacialis/marshallae benefits from the presence of ice-associated algae that are grazed heavily to fuel egg production (Campbell et al., 2016). Cooler temperatures slow development rates and allow accumulation of individuals that persist on the shelf due to a delay of entry into diapause (Coyle and Gibson, 2017; Kimmel et al., 2018). Continued warming of ocean waters is expected to impact phenology of Calanus by shifting the timing of emergence and exit into diapause (Wilson et al., 2016). Long-term warming has already caused earlier appearance of C. glacialis in the White Sea (Persson et al., 2012; Usov et al., 2013) and C. finmarchicus in Svalbard and northern Iceland (Espinasse et al., 2018).

Improved information regarding seasonal timing derived from seasonal spatio-temporal models could be useful for a wide variety of ecosystem studies and management questions. In the eastern Bering Sea, for example, the abundance of C. marshallae/glacialis during the fall is associated with walleye pollock (Gadus chalcogrammus) condition and early-life survival (Heintz et al., 2013; Siddon et al., 2013; Eisner and Yasumiishi, 2018). Notably, positive significant linear relationships have been found between late summer abundances of large copepods, and abundances of age-3 pollock three years later when they enter the fishery (Eisner and Yasumiishi, 2018). By estimating how phenology of C. glacialis/marshallae varies from
year to year, this study shows that changes in phenology likely contribute to interannual variation in late summer abundance. Detecting changes in phenology can affect the seasonal timing of spawning migrations and therefore the interpretation of pre-season test fisheries (Flynn and Hilborn, 2004).

In addition to being useful for detecting changes in phenology, the approach described here could be useful for standardizing survey indices that are potentially biased by seasonal changes in abundance or distribution. For instance, for taxa, stages, or processes that develop rapidly in time and vary over space (e.g., zooplankton, larval fish, and squid abundance) small changes in survey timing can result in biased estimates of abundance. Seasonal spatial-temporal models could be used to control for survey timing and extent. In a similar vein, fisheries scientists continue to use catch-per-unit-effort from fishery data to index changes in fish abundance. Previous research has shown how spatio-temporal models can be used to control for interannual variation in the spatial distribution of fishing (Thorson et al., 2017; Grüss et al., 2019), but there has been less focus on controlling for differences in spatial distribution occurring at finer seasonal scales than quarterly (i.e., >4 seasons per year). Seasonal fishery data could be particularly useful in conjunction with resource surveys, for example, where a seasonal spatiotemporal model could be fitted to both data sources to index changes in phenology that affect the proportion of fish that are available to a given survey (Nichol et al., 2019). In addition, such an approach could be used to study how seasonal shifts in distribution are changing in response to climate, which may in turn affect availability to resource users or be useful as an environmental index within a stock-assessment model.

Results are complementary to the growing worldwide effort to document changes in the spatial distribution of fishes and many other taxa (Anderson et al., 2009). In fishes, the rate of
climate-driven shift in distribution is often measured using "center of gravity," ; that is, the centroid of the distribution measured as latitude, longitude, depth, or other location measures (Pinsky et al., 2013; Thorson et al., 2016a; Currie et al., 2019). Center of gravity is a useful measure for comparing rates of climate-driven distribution shifts across regions but does not capture specifics about the density available to individual fishing ports or other partitions of available habitat (Rogers et al., 2019; Selden et al., 2020). Similarly, we use abundanceweighted average season as a measure of seasonal timing for available copepod prey; this follows similar practice measuring changes in phenology using a population average (Rogers and Dougherty, 2019). While this aggregate measure of timing does not indicate total abundance or availability in specific seasons, we believe that this metric will provide a useful basis for comparisons of climate-driven shifts in phenology among regions, and hope that having a standardized measure facilitates future comparative research.

We note that seasonal spatio-temporal models also generate a new set of interesting questions to resolve when using results. For example:

1. Is the spring, fall, or DFO index of yellowtail flounder abundance most appropriate to include when fitting a stock assessment model, or perhaps some average of these different surveys?
2. Is late summer/fall abundance of C. glacialis/marshallae the best predictor of pollock recruitment, or instead the abundance of C. glacialis/marshallae across all seasons within a given year (the area under the curve in each panel of Fig. 5)?
3. Is abundance-weighted average season the best metric for measuring changes in phenology, or is it better to measure changes in the seasonal timing of emergence/disappearance of
copepods, analogous to measuring leading/trailing edges in spatial measures of distribution (Anderson et al., 2009)?

These and other questions become apparent when explicitly accounting for seasonal variation within spatio-temporal models, and the solution will obviously depend upon how results are being used. Thus, these models open up new opportunities for study, as well as challenges for interpretation. We therefore argue that analysts should communicate clearly about how they interpret seasonal variation in any future applications of the seasonal spatio-temporal model. We also note that developing sensitive diagnostics for model mis-specification, and simulationtesting the likely performance of spatio-temporal models is an ongoing endeavor. The package VAST used here has been simulation-tested elsewhere (Grüss et al., 2019; Johnson et al., 2019; Thorson et al., 2019; Brodie et al., 2020), but we recommend ongoing, independent testing to understand the potential impacts of model mis-specification. Importantly, new forms of misspecification are plausible in seasonal models, e.g., varying rates of temporal change and/or spatial clustering in different seasons.

Given rapid changes in climate and its effects on the timing of seasonal processes of growth, migration, mortality, and reproduction, approaches for modeling processes that can handle seasonal and spatial processes are increasingly needed. We foresee a wide range of future applications for spatial models that include both seasonal and interannual variation. The model is implemented generically within publicly available software that also includes capacity for multivariate analysis, climate-linkages, and skillful near-term forecasting (Thorson, 2019b). We hope that future users will contribute to documenting the benefits and drawbacks of this promising class of models for ecosystem science and management.

Acknowledgments

We thank the many scientists who have contributed to pelagic sampling in the spring (EcoFOCI), late-summer/fall (BASIS), 70 m isobath, and other survey programs analyzed here regarding C. glacialis/marshallae density in the eastern Bering Sea. We similarly thank the scientists who have participated in the data collection on the Northeast Fisheries Science Center Spring and Fall bottom trawl surveys, as well as on the Department of Fisheries and Oceans Canada winter survey. Fisheries and Oceans Canada bottom trawl data are publicly available at https://ecologicaldata.org/wiki/canadian-dfo-fish-trawl-surveys, and data were accessed on May 29, 2019. The VAST package used for all analysis was developed with support from a NOAA Habitat Assessment Improvement Program grant and the Northwest Fisheries Science Center, and with ongoing support from the Alaska Fisheries Science Center. The package would not be possible without ongoing assistance from K. Kristensen, H. Skaug, and other developers of the R package Template Model Builder; K. Kristensen contributed code used in the new function `FishStatsUtils::sample_variable(.)` used in the standard error calculated in Fig. 6. We thank C. Perretti, B. Stock, and three anonymous reviewers for comments on an earlier draft. This research is contribution EcoFOCI-N940 to NOAA's Ecosystems and Fisheries-Oceanography Coordinated Investigations program.

Works cited

Anderson, B. J., Akçakaya, H. R., Fordham, D. A., Martinez-Meyer, E., Thuiller, W., and Brook, B. W. 2009. Dynamics of range margins for metapopulations under climate change. Proceedings of the Royal Society B: Biological Sciences, 276: 1415-1420.
Baier, C. T., and Napp, J. M. 2003. Climate-induced variability in Calanus marshallae populations. Journal of Plankton Research, 25: 771-782.
Banerjee, S., Gelfand, A. E., Finley, A. O., and Sang, H. 2008. Gaussian predictive process models for large spatial data sets. Journal of the Royal Statistical Society. Series B, Statistical methodology, 70: 825-848.
Brodie, S. J., Thorson, J. T., Carroll, G., Hazen, E. L., Bograd, S., Haltuch, M. A., Holsman, K. K., et al. 2020. Trade-offs in covariate selection for species distribution models: a methodological comparison. Ecography, 43: 11-24.
Brown, Z. W., and Arrigo, K. R. 2013. Sea ice impacts on spring bloom dynamics and net primary production in the Eastern Bering Sea. Journal of Geophysical Research: Oceans, 118: 43-62.
Butcher, G. S., Fuller, M. R., McAllister, L. S., and Geissler, P. H. 1990. An Evaluation of the Christmas Bird Count for Monitoring Population Trends of Selected Species. Wildlife Society Bulletin (19732006), 18: 129-134.

Callaghan, C. T., Martin, J. M., Major, R. E., and Kingsford, R. T. 2018. Avian monitoring - comparing structured and unstructured citizen science. Wildlife Research, 45: 176-184.
Campbell, R. G., Ashjian, C. J., Sherr, E. B., Sherr, B. F., Lomas, M. W., Ross, C., Alatalo, P., et al. 2016. Mesozooplankton grazing during spring sea-ice conditions in the eastern Bering Sea. Deep Sea Research Part II: Topical Studies in Oceanography, 134: 157-172.
Conn, P. B., Thorson, J. T., and Johnson, D. S. 2017. Confronting preferential sampling when analysing population distributions: diagnosis and model-based triage. Methods in Ecology and Evolution, 8: 1535-1546.
Coyle, K. O., Pinchuk, A. I., Eisner, L. B., and Napp, J. M. 2008. Zooplankton species composition, abundance and biomass on the eastern Bering Sea shelf during summer: The potential role of water-column stability and nutrients in structuring the zooplankton community. Deep Sea Research Part II: Topical Studies in Oceanography, 55: 1775-1791.
Coyle, K. O., and Gibson, G. A. 2017. Calanus on the Bering Sea shelf: probable cause for population declines during warm years. Journal of Plankton Research, 39: 257-270.
Cressie, N., Calder, C. A., Clark, J. S., Hoef, J. M. V., and Wikle, C. K. 2009. Accounting for uncertainty in ecological analysis: the strengths and limitations of hierarchical statistical modeling. Ecological Applications, 19: 553-570.
Cressie, N., and Wikle, C. K. 2011. Statistics for spatio-temporal data. John Wiley \& Sons, Hoboken, New Jersey.
Currie, J. C., Thorson, J. T., Sink, K. J., Atkinson, L. J., Fairweather, T. P., and Winker, H. 2019. A novel approach to assess distribution trends from fisheries survey data. Fisheries Research, 214: 98109.

Eisner, L. B., Napp, J. M., Mier, K. L., Pinchuk, A. I., and Andrews, A. G. 2014. Climate-mediated changes in zooplankton community structure for the eastern Bering Sea. Deep Sea Research Part II: Topical Studies in Oceanography, 109: 157-171.
Eisner, L. B., and Yasumiishi, E. M. 2018. Large copepod abundance (observed and modeled) as an indicator of pollock recruitment to age-3 in the southeastern Bering Sea. In Ecosystem Cosiderations: 2018 Status of the Eastern Bering Sea Marine Ecosystem. Ed. by S. Zador and E. C. Siddon. Alaska Fisheries Science Center, Seattle, WA.

Eisner, L. B., Pinchuk, A. I., Kimmel, D. G., Mier, K. L., Harpold, C. E., and Siddon, E. C. 2018. Seasonal, interannual, and spatial patterns of community composition over the eastern Bering Sea shelf in cold years. Part I: zooplankton. ICES Journal of Marine Science, 75: 72-86.
Espinasse, M., Halsband, C., Varpe, Ø., Gislason, A., Gudmundsson, K., Falk-Petersen, S., and Eiane, K. 2018. Interannual phenological variability in two North-East Atlantic populations of Calanus finmarchicus. Marine Biology Research, 14: 752-767.
Flynn, L., and Hilborn, R. 2004. Test fishery indices for sockeye salmon (Oncorhynchus nerka) as affected by age composition and environmental variables. Canadian Journal of Fisheries and Aquatic Sciences, 61: 80-92.
Fournier, D. A., Skaug, H. J., Ancheta, J., Ianelli, J., Magnusson, A., Maunder, M. N., Nielsen, A., et al. 2012. AD Model Builder: using automatic differentiation for statistical inference of highly parameterized complex nonlinear models. Optimization Methods and Software, 27: 1-17.
Grieve, B. D., Hare, J. A., and Saba, V. S. 2017. Projecting the effects of climate change on Calanus finmarchicus distribution within the U.S. Northeast Continental Shelf | Scientific Reports. Scientific Reports, 7: 1-12.
Grosslein, M. D. 1969. Groundfish survey methods. Bureau of Commercial Fisheries, Biological Laboratory.
Grüss, A., Walter, J. F., Babcock, E. A., Forrestal, F. C., Thorson, J. T., Lauretta, M. V., and Schirripa, M. J. 2019. Evaluation of the impacts of different treatments of spatio-temporal variation in catch-per-unit-effort standardization models. Fisheries Research, 213: 75-93.
Heintz, R. A., Siddon, E. C., Farley, E. V., and Napp, J. M. 2013. Correlation between recruitment and fall condition of age-0 pollock (Theragra chalcogramma) from the eastern Bering Sea under varying climate conditions. Deep Sea Research Part II: Topical Studies in Oceanography, 94: 150-156.
Hunt, G. L., Coyle, K. O., Eisner, L. B., Farley, E. V., Heintz, R. A., Mueter, F., Napp, J. M., et al. 2011. Climate impacts on eastern Bering Sea foodwebs: a synthesis of new data and an assessment of the Oscillating Control Hypothesis. ICES Journal of Marine Science, 68: 1230-1243.
Johnson, K. F., Thorson, J. T., and Punt, A. E. 2019. Investigating the value of including depth during spatiotemporal index standardization. Fisheries Research, 216: 126-137.
Kai, M., Thorson, J. T., Piner, K. R., and Maunder, M. N. 2017. Predicting the spatio-temporal distributions of pelagic sharks in the western and central North Pacific. Fisheries Oceanography, 26: 569-582.
Kanamori, Y., Takasuka, A., Nishijima, S., and Okamura, H. 2019. Climate change shifts the spawning ground northward and extends the spawning period of chub mackerel in the western North Pacific. Marine Ecology Progress Series, 624: 155-166.
Kass, R. E., and Steffey, D. 1989. Approximate bayesian inference in conditionally independent hierarchical models (parametric empirical bayes models). Journal of the American Statistical Association, 84: 717-726.
Kimmel, D. G., Eisner, L. B., Wilson, M. T., and Duffy-Anderson, J. T. 2018. Copepod dynamics across warm and cold periods in the eastern Bering Sea: Implications for walleye pollock (Gadus chalcogrammus) and the Oscillating Control Hypothesis. Fisheries Oceanography, 27: 143-158.
Kristensen, K., Nielsen, A., Berg, C. W., Skaug, H., and Bell, B. M. 2016. TMB: Automatic Differentiation and Laplace Approximation. Journal of Statistical Software, 70: 1-21.
Lauth, R. R., and Conner, J. 2016. Results of the 2013 eastern Bering Sea continental shelf bottom trawl survey of groundfish and invertebrate resources. NOAA Technical Memorandum, NMFS-AFSC331. Seattle, WA.

Legault, C. M., Alade, L., Gross, W. E., and Stone, H. H. 2014. Stock Assessment of Georges Bank Yellowtail Flounder for 2014. 2014/01. Transboundary Resources Assessment Committee. https://www.nefsc.noaa.gov/saw/trac/TRD_2014_01_E_.pdf.

Legault, C. M., and McCurdy, Q. M. 2018. Stock Assessment of Georges Bank Yellowtail Flounder for 2018. 2018/03. Transboundary Resources Assessment Committee. https://www.nefsc.noaa.gov/assessments/trac/documents/gbyt-assessment-2018-v3.pdf.
Lindgren, F., Rue, H., and Lindström, J. 2011. An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 73: 423-498.
Lindgren, F. 2012. Continuous domain spatial models in R-INLA. The ISBA Bulletin, 19: 14-20.
Lindgren, F., and Rue, H. 2015. Bayesian spatial modelling with r-inla. Journal of Statistical Software, 63: 1-25.
Livingston, P. A., Aydin, K., Buckley, T. W., Lang, G. M., Yang, M.-S., and Miller, B. S. 2017. Quantifying food web interactions in the North Pacific - a data-based approach. Environmental Biology of Fishes, 100: 443-470.
Miller, T. J., Das, C., Politis, P., Miller, A., Lucey, S., Legault, C., Brown, R., et al. 2010. Estimation of albatross iv to henry b. Bigelow calibration factors. Northeast Fisheries Science Center Reference Document 10-05. Northeast Fisheries Science Center, Woods Hole, MA.
Murawski, S. A., and Gavaris, S. 2004. Computation of Allocation Shares for Canada and the USA of the Transboundary Resources of Atlantic Cod, Haddock and Yellowtail Founder on Georges Bank. Transboundary Resources Assessment Committee.
Nichol, D. G., Kotwicki, S., Wilderbuer, T. K., Lauth, R. R., and lanelli, J. N. 2019. Availability of yellowfin sole Limanda aspera to the eastern Bering Sea trawl survey and its effect on estimates of survey biomass. Fisheries Research, 211: 319-330.
O’Boyle, R., Beanlands, D., Fanning, P., Hunt, J., Hurley, P., Lambert, T., Simon, J., et al. 1995. An overview of joint science/industry surveys on the Scotian Shelf, Bay of Fundy, and Georges Bank. Canadian Technical Report of Fisheries and Aquatic Sciences, $95 / 133$. Department of Fisheries and Oceans. http://publications.gc.ca/collections/collection_2015/mpo-dfo/Fs97-6-3083eng.pdf.
Ono, K., lanelli, J. N., McGilliard, C. R., and Punt, A. E. 2018. Integrating data from multiple surveys and accounting for spatio-temporal correlation to index the abundance of juvenile Pacific halibut in Alaska. ICES Journal of Marine Science, 75: 572-584.
Pedersen, M. W., and Berg, C. W. 2017. A stochastic surplus production model in continuous time. Fish and Fisheries, 18: 226-243.
Persson, J., Stige, L. C., Stenseth, N. C., Usov, N., and Martynova, D. 2012. Scale-dependent effects of climate on two copepod species, Calanus glacialis and Pseudocalanus minutus, in an Arcticboreal sea. Marine Ecology Progress Series, 468: 71-83.
Pinsky, M. L., Worm, B., Fogarty, M. J., Sarmiento, J. L., and Levin, S. A. 2013. Marine taxa track local climate velocities. Science, 341: 1239-1242.
Pinsky, M. L., and Palumbi, S. R. 2013. Meta-analysis reveals lower genetic diversity in overfished populations. Molecular Ecology. http://onlinelibrary.wiley.com/doi/10.1111/mec.12509/full (Accessed 19 December 2013).
Pinto, C., Travers-Trolet, M., Macdonald, J. I., Rivot, E., and Vermard, Y. 2018. Combining multiple data sets to unravel the spatiotemporal dynamics of a data-limited fish stock. Canadian Journal of Fisheries and Aquatic Sciences, 76: 1338-1349.
Politis, P. J., Galbraith, J. K., Kostovick, P., and Brown, R. W. 2014. Northeast Fisheries Science Center bottom trawl survey protocols for the NOAA Ship Henry B. Bigelow. https://repository.library.noaa.gov/view/noaa/4825 (Accessed 4 September 2019).
R Core Team. 2017. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

Rogers, L. A., Griffin, R., Young, T., Fuller, E., Martin, K. St., and Pinsky, M. L. 2019. Shifting habitats expose fishing communities to risk under climate change \| Nature Climate Change. Nature Climate Change, 9: 512-516.
Rogers, L. A., and Dougherty, A. B. 2019. Effects of climate and demography on reproductive phenology of a harvested marine fish population. Global Change Biology, 25: 708-720.
Scranton, K., and Amarasekare, P. 2017. Predicting phenological shifts in a changing climate. Proceedings of the National Academy of Sciences, 114: 13212-13217.
Selden, R. L., Thorson, J. T., Samhouri, J. F., Bograd, S. J., Brodie, S., Carroll, G., Haltuch, M. A., et al. 2020. Coupled changes in biomass and distribution drive trends in availability of fish stocks to US West Coast ports. ICES Journal of Marine Science, 77: 188-199.
Siddon, E. C., Kristiansen, T., Mueter, F. J., Holsman, K. K., Heintz, R. A., and Farley, E. V. 2013. Spatial Match-Mismatch between Juvenile Fish and Prey Provides a Mechanism for Recruitment Variability across Contrasting Climate Conditions in the Eastern Bering Sea. PLOS ONE, 8: e84526.
Sigler, M. F., Renner, M., Danielson, S. L., Eisner, L. B., Lauth, R. R., Kuletz, K. J., Logerwell, E. A., et al. 2011. Fluxes, Fins, and Feathers: Relationships Among the Bering, Chukchi, and Beaufort Seas in a Time of Climate Change. Oceanography, 24: 250-265.
Sigler, M. F., Stabeno, P. J., Eisner, L. B., Napp, J. M., and Mueter, F. J. 2014. Spring and fall phytoplankton blooms in a productive subarctic ecosystem, the eastern Bering Sea, during 1995-2011. Deep Sea Research Part II: Topical Studies in Oceanography, 109: 71-83.
Sigler, M. F., Napp, J. M., Stabeno, P. J., Heintz, R. A., Lomas, M. W., and Hunt, G. L. 2016. Variation in annual production of copepods, euphausiids, and juvenile walleye pollock in the southeastern Bering Sea. Deep Sea Research Part II: Topical Studies in Oceanography, 134: 223-234.
Skaug, H., and Fournier, D. 2006. Automatic approximation of the marginal likelihood in non-Gaussian hierarchical models. Computational Statistics \& Data Analysis, 51: 699-709.
Stone, H. H., Gavaris, S., Legault, C. M., Neilson, J. D., and Cadrin, S. X. 2004. Collapse and recovery of the yellowtail flounder (Limanda ferruginea) fishery on Georges Bank. Journal of Sea Research, 51: 261-270.
Stone, H. H., and Gross, W. E. 2012. Review of the Georges Bank Research Vessel Survey Program, 1987 2011. Canadian Manuscript Report of Fisheries and Aquatic Sciences, 2988.

Strasburger, W. W., Hillgruber, N., Pinchuk, A. I., and Mueter, F. J. 2014. Feeding ecology of age-0 walleye pollock (Gadus chalcogrammus) and Pacific cod (Gadus macrocephalus) in the southeastern Bering Sea. Deep Sea Research Part II: Topical Studies in Oceanography, 109: 172180.

Thorson, J. T., Shelton, A. O., Ward, E. J., and Skaug, H. J. 2015. Geostatistical delta-generalized linear mixed models improve precision for estimated abundance indices for West Coast groundfishes. ICES Journal of Marine Science: Journal du Conseil, 72: 1297-1310.
Thorson, J. T., Pinsky, M. L., and Ward, E. J. 2016a. Model-based inference for estimating shifts in species distribution, area occupied and centre of gravity. Methods in Ecology and Evolution, 7: 9901002.

Thorson, J. T., Ianelli, J. N., Larsen, E. A., Ries, L., Scheuerell, M. D., Szuwalski, C., and Zipkin, E. F. 2016 b. Joint dynamic species distribution models: a tool for community ordination and spatio-temporal monitoring. Global Ecology and Biogeography, 25: 1144-1158.
Thorson, J. T., Fonner, R., Haltuch, M. A., Ono, K., and Winker, H. 2017. Accounting for spatiotemporal variation and fisher targeting when estimating abundance from multispecies fishery data. Canadian Journal of Fisheries and Aquatic Sciences, 74: 1794-1807.

Thorson, J. T. 2018. Three problems with the conventional delta-model for biomass sampling data, and a computationally efficient alternative. Canadian Journal of Fisheries and Aquatic Sciences, 75: 1369-1382.
Thorson, J. T. 2019a. Measuring the impact of oceanographic indices on species distribution shifts: The spatially varying effect of cold-pool extent in the eastern Bering Sea. Limnology and Oceanography, 64: 2632-2645.
Thorson, J. T., Adams, G., and Holsman, K. 2019. Spatio-temporal models of intermediate complexity for ecosystem assessments: A new tool for spatial fisheries management. Fish and Fisheries, 20: 1083-1099.
Thorson, J. T. 2019b. Guidance for decisions using the Vector Autoregressive Spatio-Temporal (VAST) package in stock, ecosystem, habitat and climate assessments. Fisheries Research, 210: 143161.

Usov, N., Kutcheva, I., Primakov, I., and Martynova, D. 2013. Every species is good in its season: Do the shifts in the annual temperature dynamics affect the phenology of the zooplankton species in the White Sea? Hydrobiologia, 706: 11-33.
Wilson, R. J., Banas, N. S., Heath, M. R., and Speirs, D. C. 2016. Projected impacts of 21st century climate change on diapause in Calanus finmarchicus. Global Change Biology, 22: 3332-3340.
Zipkin, E. F., Ries, L., Reeves, R., Regetz, J., and Oberhauser, K. S. 2012. Tracking climate impacts on the migratory monarch butterfly. Global Change Biology, 18: 3039-3049.

Table 1 - List of estimated parameters (and associated symbols) governing spatial and temporal variance (listing estimate "Est." and standard error "SE") for each case-study application; this corresponds to all estimated fixed effects except intercepts $\mu_{\beta}, \beta_{n u}(u)$, and $\beta_{n y}(y)$. Parameters listed as "-" correspond to terms that are dropped due to the corresponding variance approaching zero (see Table S3 for details). Note that the eastern Bering Sea application does not include spatial or temporal variation in the first linear predictor, due to a near 100% encounter probability; linear transformation \mathbf{H} governing geometric anisotropy involves estimating two parameters which are listed first for each case-study.

Parameter	Symbol	Northwest Atlantic		Eastern Bering Sea	
		Est.	SE	Est	SE
Parameter \#1 in H	-	0.264	0.083	0.421	0.082
Parameter \#2 in H	-	0.571	0.097	-0.221	0.088
SD for spatial variation in n	$\sigma_{n \omega}$	1.76	0.182	-	-
SD for spatial season-year interaction in n	$\sigma_{n \varepsilon}$	0.47	0.05	-	-
Natural log. for decorrelation rate in n	$\ln \left(\kappa_{n}\right)$	-3.296	0.096	-	-
SD for intercept season-year interaction in n	$\sigma_{n \beta}$	-	-	-	-
Autocorrelation for intercepts in n	$\rho_{n \beta}$	-	-	-	-
Autocorrelation for spatial season-year					
interaction in n	$\rho_{n \varepsilon}$	0.874	0.031	-	-
Natural log. for SD in spatial season and					
year effects in n	$\ln \left(\sigma_{n \xi}\right)$	-0.638	0.135	-	-
SD for spatial variation in w	$\sigma_{w \omega}$	0.479	0.069	1.481	0.170
SD for spatial season-year interaction in w	$\sigma_{w \varepsilon}$	0.89	0.063	1.039	0.055
Natural log. for decorrelation rate in w	$\ln \left(\kappa_{w}\right)$	-2.567	0.116	-4.488	0.063
SD for intercept season-year interaction in					
w	$\sigma_{w \beta}$	-	-	-	-
Autocorrelation for intercepts in w	$\rho_{w \beta}$	-	-	-	-
Autocorrelation for spatial season-year					
interaction in w					-0.149
Natural log. for SD in spatial season and	$\rho_{w \varepsilon}$	-0.085	0.721	0.034	
year effects in w	$\ln \left(\sigma_{w \xi}\right)$	-			
Natural log. for SD of measurement error	$\ln \left(\sigma_{m}\right)$	-0.133	0.04	-0.644	0.163

Fig. 1 - Data availability (y-axis) for season (colored line) and each year (x-axis) for case-studies in the Northwest Atlantic Ocean (top panel) and eastern Bering Sea (bottom panel), where the colorbar for each season is indicated in each legend.

Fig. 2 - Index of relative abundance (y-axis using log-scale; scaled to have mean of 1 across years) for a design-based index (black line), seasonal spatio-temporal model (blue line), or independent spatio-temporal model (red line) including +/- 1 standard error (shaded interval) of yellowtail flounder for 1985-2017 (x-axis) for each of three seasons (DFO, as well as spring and fall NEFSC bottom trawl surveys). Note that the design-based and independent spatio-temporal models cannot estimate abundance for the DFO survey in 1985/1986, and therefore have no estimates for those years (top panel)

Fig. 3 - Spatio-temporal variation in the \log-linked linear predictor for numbers-density $\varepsilon_{n}^{*}(s, t)$ for each location s and year-season interval t for yellowtail flounder on Georges Bank in the Northwest Atlantic Ocean for 1989-1992 (rows) of the 24 modeled years (1985-2017) and three seasonal surveys (columns) in each year (DFO Feb.-March, NEFSC Spring March-April, and NEFSC Fall Sept.-Nov. surveys). Each panel also shows the location of available data in that season and year (black dots), which highlights the absence of data from DFO in the southwestern portion of the stock area. Years are selected to highlight the estimates of increased density in the DFO survey in the southwestern portion 1990-1991 which is not sampled by that survey; this estimated hotspot is informed by sharing information among surveys. The use of a log-linked linear predictor means, for example, that a location s and year-season t with a value of $\varepsilon_{n}^{*}(s, t)=0.1$ has an approximately $\exp (0.1)=10.5 \%$ higher prediction of numbers-density $n^{*}(s, t)$, while a location and time where $\varepsilon_{n}^{*}(s, t)=1.0$ has an approximately $\exp (1.0)=172 \%$ higher prediction of numbers-density $n^{*}(s, t)$ than the value otherwise expected for that location and time.

Fig. 4 - Natural logarithm of estimated density (vertically-integrated from 5 meters above seafloor to surface), $\ln \left(n u m b e r \cdot \mathrm{~km}^{-2}\right.$), for copepodite stages 3+ Calanus marshallae/glacialis for four selected years (rows) from 24 analyzed years (1993-2016) and nine month-long intervals in each year (columns). Each panel also shows the location of available data in that season and year (black dots).

Fig. 5 - Natural logarithm of estimated total abundance (left-hand y-axis) for copepodite stage 3+ Calanus marshallae/glacialis in Feb.-Oct. (x-axis) for each year (panels) from 1993-2016, estimated using a seasonal spatio-temporal model. Each panel shows an estimate (black line) +/one standard error (grey shaded interval), and also shows the sample size for each season (dashed line; using right-hand y-axis). Note that the left and right-hand y-axes have identical range for all panels, but abundance (left-hand y-axis) is in log-space while sample size (right-hand y-axis) is in natural space.

Fig. 6 - Estimate of abundance-weighted average season (calculated using Eq. 11; black line with +/- one standard error as grey shaded area; scale on left-hand y-axis) in every year 19932016 based on density estimates in every month Feb.-Oct. (x-axis) from a seasonal spatiotemporal model compared with the summertime spatial extent of cold $\left(\leq 2^{\circ} C\right)$ near-bottom waters in the eastern Bering Sea (dashed line, "cold pool extent"; scale on right-hand y-axis). We also show the Pearson correlation between cold-pool extent and the abundance-weighted average season, as well as the standard error for this correlation based on 100 correlation values calculated when simulating densities from the joint precision of fixed and random effects (bottom right).

